skip to main content


Search for: All records

Creators/Authors contains: "Lilly, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Low-mass stars like our Sun begin their evolution within cold (10 K) and dense (∼105 cm−3) cores of gas and dust. The physical structure of starless cores is best probed by thermal emission of dust grains. We present a high-resolution dust continuum study of the starless cores in the B10 region of the Taurus Molecular Cloud. New observations at 1.2 and 2.0 mm (12 and 18 arcsec resolution) with the NIKA2 instrument on the IRAM 30m have probed the inner regions of 14 low-mass starless cores. We perform sophisticated 3D radiative transfer modelling for each of these cores through the radiative transfer framework pandora, which utilizes RADMC-3D. Model best-fits constrain each cores’ central density, density slope, aspect ratio, opacity, and interstellar radiation field strength. These ‘typical’ cores in B10 span central densities from 5 × 104 to 1 × 106 cm−3, with a mean value of 2.6 × 105 cm−3. We find the dust opacity laws assumed in the 3D modelling, as well as the estimates from Herschel, have dust emissivity indices, β’s, on the lower end of the distribution constrained directly from the NIKA2 maps, which averages to β = 2.01 ± 0.48. From our 3D density structures and archival NH3 data, we perform a self-consistent virial analysis to assess each core’s stability. Ignoring magnetic field contributions, we find nine out of the 14 cores (64  per cent) are either in virial equilibrium or are bound by gravity and external pressure. To push the bounded cores back to equilibrium, an effective magnetic field difference of only ∼15 $\mu$G is needed.

     
    more » « less
  2. ABSTRACT

    In the hierarchical view of star formation, giant molecular clouds (GMCs) undergo fragmentation to form small-scale structures made up of stars and star clusters. Here we study the connection between young star clusters and cold gas across a range of extragalactic environments by combining the high resolution (1″) PHANGS–ALMA catalogue of GMCs with the star cluster catalogues from PHANGS–HST. The star clusters are spatially matched with the GMCs across a sample of 11 nearby star-forming galaxies with a range of galactic environments (centres, bars, spiral arms, etc.). We find that after 4 − 6 Myr the star clusters are no longer associated with any gas clouds. Additionally, we measure the autocorrelation of the star clusters and GMCs as well as their cross-correlation to quantify the fractal nature of hierarchical star formation. Young (≤10 Myr) star clusters are more strongly autocorrelated on kpc and smaller spatial scales than the $\gt \, 10$ Myr stellar populations, indicating that the hierarchical structure dissolves over time.

     
    more » « less
  3. Abstract The PHANGS program is building the first data set to enable the multiphase, multiscale study of star formation across the nearby spiral galaxy population. This effort is enabled by large survey programs with the Atacama Large Millimeter/submillimeter Array (ALMA), MUSE on the Very Large Telescope, and the Hubble Space Telescope (HST), with which we have obtained CO(2–1) imaging, optical spectroscopic mapping, and high-resolution UV–optical imaging, respectively. Here, we present PHANGS-HST, which has obtained NUV– U – B – V – I imaging of the disks of 38 spiral galaxies at distances of 4–23 Mpc, and parallel V - and I -band imaging of their halos, to provide a census of tens of thousands of compact star clusters and multiscale stellar associations. The combination of HST, ALMA, and VLT/MUSE observations will yield an unprecedented joint catalog of the observed and physical properties of ∼100,000 star clusters, associations, H ii regions, and molecular clouds. With these basic units of star formation, PHANGS will systematically chart the evolutionary cycling between gas and stars across a diversity of galactic environments found in nearby galaxies. We discuss the design of the PHANGS-HST survey and provide an overview of the HST data processing pipeline and first results. We highlight new methods for selecting star cluster candidates, morphological classification of candidates with convolutional neural networks, and identification of stellar associations over a range of physical scales with a watershed algorithm. We describe the cross-observatory imaging, catalogs, and software products to be released. The PHANGS high-level science products will seed a broad range of investigations, in particular, the study of embedded stellar populations and dust with the James Webb Space Telescope, for which a PHANGS Cycle 1 Treasury program to obtain eight-band 2–21 μ m imaging has been approved. 
    more » « less